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Abstract
In the study of bi-Hamiltonian systems (both classical and quantum) one starts
with a given dynamics and looks for all alternative Hamiltonian descriptions it
admits. In this paper, we start with two compatible Hermitian structures (the
quantum analogue of two compatible classical Poisson brackets) and look for
all the dynamical systems which turn out to be bi-Hamiltonian with respect to
them.

PACS numbers: 03.65.Ca, 03.65.Fd, 02.10.Ud, 02.40.Yy

1. Introduction

It is by now well known that the general structures of classical and quantum systems are not
essentially different. When considered as abstract dynamical systems on infinite- or finite-
dimensional vector spaces of states, both are ‘Hamiltonian vector fields’, and when considered
in the Schrödinger picture, both are ‘inner derivations’ on the Lie algebra of observables with
respect to the Poisson brackets and the commutator brackets respectively [1]. Moreover, in
some appropriate limit, quantum mechanics should reproduce classical mechanics. From
this point of view, it is a natural question to ask which alternative quantum descriptions
of a given quantum system would reproduce the alternative classical descriptions known as
bi-Hamiltonian descriptions of integrable systems [2]. This question has been addressed
recently in several collaborations involving some of us in different combinations [3].

When we consider composite systems and interactions among them it is interesting
to analyse to what extent these alternative quantum descriptions survive. This paper is a
preliminary step in this direction.
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The specific problem we would like to address can then be stated as follows:

‘How many different quantum systems may, at the same time, admit to bi-Hamiltonian
descriptions with respect to the same alternative structures?’

We will show that for generic, compatible, alternative structures the different admissible
quantum systems are pairwise commuting; moreover, in finite dimensions, they generate a
maximal torus.

To tackle the stated problem [4], we construct a quantum system out of a given Hermitian
structure and then we consider compatible systems out of two Hermitian structures. The
‘quantum systems’ associated with a given Hermitian structure correspond to the infinitesimal
generator of the ‘phase group’. The compatibility condition amounts to the requirement of
compatibility (commutativity) of the ‘phase groups’ with respect to both Hermitian structures.

All of our considerations will be carried over on finite-dimensional vector spaces, and
only in the final section shall we consider the extension of our results to infinite-dimensional
Hilbert spaces.

2. Hermitian structures on R2n

In view of our interest in quantum systems, we will focus our attention here on linear systems.
Also, the tensorial structures that are descried below will be assumed to be represented by
constant matrices. We will consider, to start with, three relevant tensor structures that can be
introduced in R2n, namely a metric tensor of the form

g = gjk dxj ⊗ dxk (1)

a symplectic structure

ω = ωjk dxj ∧ dxk (2)

and a complex structure J , i.e. a (1, 1)-type tensor satisfying

J 2 = −I. (3)

We will be interested in the case in which the above structures are admissible. By this we
mean the following:

(i) Suppose we are given g and J . We will say that they are admissible, or thatg is ‘Hermitian’
iff

g(Jx, Jy) = g(x, y) ∀x, y. (4)

We will always assume this to be the case.
Now, by virtue of J 2 = −I, g(x, Jy) = −g(J (Jx), Jy) = −g(Jx, y). Hence

g(Jx, y) + g(x, Jy) = 0. (5)

Note that the previous two equations imply that J generates finite as well as infinitesimal
rotations at the same time. Moreover, equation (5) implies that the (0, 2)-type tensor

ω =: g(J ·, ·) (6)

is a symplectic form on R2n and that

J = g−1 ◦ ω. (7)

By proceeding as before, one can prove that

ω(Jx, Jy) = ω(x, y) (8)

and

ω(Jx, y) + ω(x, Jy) = 0. (9)

J will then generate both finite and infinitesimal symplectic transformations.
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(ii) Alternatively, one could start from g andω and say that they are admissible iff J = g−1 ◦ ω
satisfies J 2 = −I. Written explicitly in components, this condition reads

gjkωkl g
lmωmn = −δjn. (10)

Remark.

(i) Note that if condition (4) does not hold, we can always build a Hermitian structure out
of a given g by substituting it with the symmetrized metric tensor

gs(·, ·) =: 1
2 {g(J ·, J ·) + g(·, ·)} (11)

which will be positive and nondegenerate if g is positive and nondegenerate.
Quite similarly [5], if condition (10) does not hold, then Riesz’s theorem tells us that

there exists a nonsingular linear operator A such that

ω(x, y) = g(Ax, y) (12)

and the antisymmetry of ω implies

g(Ax, y) = −g(x,Ay) (13)

i.e. A is skew-Hermitian A† = −A, and −A2 > 0. Let P then be a (symmetric) non-negative
square root of A. P will be injective, and so P−1 will be well defined5. We then define
J =: AP−1 and

gω(·, ·) =: g(P (·), ·). (14)

Therefore

ω(x, y) = g(Ax, y) = gω(Jx, y) (15)

and J † = −J, J 2 = −I. The triple (gω, J, ω) will then be an admissible triple, equation (5)
will hold true for gω and, moreover,

gω(Jx, Jy) = g(Ax, Jy) = −g(AJx, y) = gω(x, y) (16)

and equation (4) will be satisfied as well.
(ii) The adjoint A† of any linear operator A w.r.t. a metric tensor g is defined by the

standard relation

g(A†x, y) =: g(x,Ay) (17)

and we can read equation (5) as saying that the complex structure J is skew-adjoint w.r.t. the
metric tensor g.

Although it may seem elementary, it is worth stressing here that despite the fact that we
are working in a real vector space, the adjoint of A does not coincide with the transpose AT

for a general g. Indeed, spelling out equation (17) explicitly in terms of matrices leads to

A† = g−1AT g (18)

and therefore, even for real matrices, A† = AT only if the metric is standard Euclidean, and
in general, symmetric matrices need not be self-adjoint.

A linear structure on R2n is associated with a given dilation (or Liouville) vector
field �. Given then a linear structure on R2n, we can associate with every matrix
A ≡ ∥∥Aij∥∥ ∈ gl(2n,R) both a (1, 1)-type tensor field

TA = Aij dxj ⊗ ∂

∂xi
(19)

5 In the infinite-dimensional case, it can be proved [5] that A is bounded and injective, and that P is also injective
and densely defined, so that P−1 is well defined in the infinite-dimensional case as well.
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and a linear vector field

XA = Aijx
j ∂

∂xi
. (20)

The two are connected by

TA(�) = XA (21)

and are both homogeneous of degree zero, i.e.

L�XA = L�TA = 0. (22)

The correspondence A → TA is (full) associative algebra and Lie algebra isomorphism.
The correspondence A → XA is instead only a Lie algebra (anti)isomorphism, i.e.

TA ◦ TB = TAB (23)

while

[XA,XB] = −X[A,B]. (24)

Moreover, for any A,B ∈ gl(2n,R)

LXA
TB = −T[A,B]. (25)

This implies that all statements that can be proved at the level of vector fields and/or at
that of (1, 1) tensors can be rephrased into equivalent statements in terms of the corresponding
representative matrices, and vice versa. That is why we will work mostly directly with the
representative matrices in what follows.

Out of the Liouville field and the metric tensor, we can construct the quadratic function

g = 1
2g(�,�) (26)

and the associated Hamiltonian vector field � via

i�ω = −dg. (27)

In a given coordinate system (x1, ·, x2n), � = xi∂/∂xi, � = �k∂/∂xk and explicitly,
ωjk�

k = −gjkxk, implying gljωjk�k = −xl, i.e. �k = J kl x
l or

J (�) = −� ⇔ � = J (�). (28)

� will preserve both g and ω, and hence J (more generally, it will preserve any third structure
if it preserves the other two):

L�ω = L�g = L�J = 0. (29)

Given a metric tensor and an admissible symplectic form, a Hermitian structure on R2n

is a map h : R2n × R2n → R2 defined as

h : (x, y) 	→ (g(x, y), ω(x, y)).

Equivalently (and having in mind quantum systems) one can exploit the fact that R2n can be
given a complex vector space structure by defining, for z = α + iβ ∈ C and x ∈ R2n,

z · x = (α + iβ)x =: αx + Jβx. (30)

Then h will become a Hermitian scalar product, linear in the second factor, on a complex
vector space, and we can now write

h(x, y) = g(x, y) + ig(Jx, y) (31)

and of course a statement equivalent to the previous ones will be

L�h = 0. (32)
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The vector field � will therefore be a generator of the unitary group on Cn, and will be an
instance of what we will call a quantum system. More generally, a quantum system will be
any linear vector field

�A = A
j

kx
k ∂

∂xj
(33)

associated with a matrix A = ‖Aj k‖ that preserves both g and ω or, equivalently, h:

L�A
h = 0. (34)

This defining requirement on �A implies that the matrix A in the description of �A be at
the same time an infinitesimal generator of a realization of the symplectic group Sp(n) and of
a realization of the rotation group SO(2n). The intersection of these two Lie algebras yields a
realization of the Lie algebra of the unitary group.

3. Bi-Hamiltonian descriptions

Consider now two different Hermitian structures on R2n, h1 = g1 + iω1 and h2 = g2 + iω2,
with the associated quadratic functions g1 = g1(�,�), g2 = g2(�,�) and Hamiltonian
vector fields �1 and �2. Then

Definition. h1 and h2 will be said to be ‘compatible’ iff

L�1h2 = L�2h1 = 0. (35)

This will of course imply

L�1ω2 = L�1g2 = 0 (36)

separately, and similar equations with the indices interchanged.

Remark. Note that if ω = 1
2ωij dxi ∧ dxj is a constant symplectic structure and

X = Aijx
j∂

/
∂xi is a linear vector field, then the condition LXω = 0 can be written in

terms of the representative matrices as the requirement that the matrix ωA is symmetric, i.e.

ωA = (ωA)T ⇔ ωA +AT ω = 0 (37)

while the condition LXg = 0 implies that the matrix gA is skew-symmetric, i.e.

gA + (gA)T = gA +AT g = 0. (38)

Note now that from i�2ω2 = −dg2 and L�1g2 = 0, we obtain

0 = L�1

(
i�2ω2

) =: L�1ω2(�2, ·) = (
L�1ω2

)
(�2, ·) + ω2([�1, �2], ·)

and as L�1ω2 = 0

i[�1,�2]ω2 = 0 (39)

and similarly for ω1. As neither ω1 nor ω2 is degenerate, this implies that �1 and �2

commute, i.e.

[�1, �2] = 0. (40)

Moreover, remembering that given a symplectic structure ω, the Poisson bracket of any two
functions f and g is defined as {f, g} =: ω(Xg,Xf ), where Xf and Xg are the Hamiltonian
vector fields associated with f and g respectively, we find 0 = L�1 g2 = dg2(�1) =
−ω2(�2, �1). Hence we find

{g1, g2}2 = 0 (41)

where {·, ·}2 is the Poisson bracket associated with ω2 and similarly for ω1.
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Remark. The four real conditions, {g1, g2}1,2 = 0 and L�1ω2 = L�2ω1 = 0, are actually
equivalent to those stated in complex form in equation (35).

Remembering what has already been stated about the fact that statements concerning
linear vector fields translate into equivalent statements for the (1, 1)-type tensor fields having
the same representative matrices, and recalling that the defining matrices of �1 and �2 are
precisely those of the corresponding complex structures, we see at once that

[�1, �2] = 0 ⇔ [J1, J2] = 0 (42)

i.e. the two complex structures will commute as well.
In general, given any two (0, 2) (or (2, 0)) tensor fields h and g one (at least) of which,

say h, is invertible, the composite tensor h−1 ◦ g will be a (1, 1)-type tensor. Then, out of the
two compatible structures, we can build up the two (1, 1)-type tensor fields:

G = g−1
1 ◦ g2 (43)

and

T = ω−1
1 ◦ ω2. (44)

Actually, one can prove at once that the two are related, and indeed direct calculation
proves that

G = J1 ◦ T ◦ J−1
2 ≡ −J1 ◦ T ◦ J2 ⇔ T = −J1 ◦G ◦ J2. (45)

It turns out that T (and hence G) commutes with both complex structures, i.e.

[G,Ja] = [T , Ja] = 0 a = 1, 2. (46)

This follows from the fact that both G and T are �-invariant, i.e.

L�1,2G = L�1,2T = 0 (47)

and from equation (25).
It follows also from equations (25) and (26) that G and T commute, i.e.

[G,T ] = 0. (48)

Moreover, G enjoys the property that

ga(Gx, y) = ga(x,Gy) a = 1, 2. (49)

Indeed, one can prove by direct calculation that

g1(Gx, y) = g1(x,Gy) = g2(x, y) (50)

while

g2(Gx, y) = g2(x,Gy) = g−1
1 (g2(x, ·), g2(y, ·)) (51)

and this completes the proof. In equation (49) it can be seen that G is ‘self-adjoint’ w.r.t. both
metrics.

Note that the derivation of this result does not require the compatibility condition to hold.
If the latter is assumed, however, one can also prove that T is self-adjoint w.r.t. both metrics,
and that both J1 and J2 are instead skew-adjoint w.r.t. both structures, i.e.

ga(T x, y) = ga(x, T y) a = 1, 2 (52)

and

g1(x, J2y) + g1(J2x, y) = 0 ∀x, y (53)

with a similar equation with the indices interchanged.
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Indeed, from, e.g.,L�1ω2 = 0 we obtain, in terms of the representative matrices and using
equation (37) and J1 = g−1

1 ω1,

ω2g
−1
1 ω1 = ω1g

−1
1 ω2 ⇔ ω2ω

−1
1 g1 = g1ω

−1
1 ω2. (54)

Remembering the definition of T, this is equivalent to g1T = (g1T )
T , which leads to

T = g−1
1 T T g1 = (T †)1 (55)

where (T †)1 is the adjoint of T w.r.t. g1. Interchanging indices, one can prove that (T †)2 = T

as well.
ConcerningJ (that have already been proved to be skew-adjoint w.r.t. the respective metric

tensors), consider, e.g.

(J
†
1 )2 =: g−1

2 J T1 g2 = −g−1
2 g1J

T
1 g

−1
1 g2 = −G−1J1G = −J1

as G and J commute. A similar result holds of course for J2.
Summarizing what has been proved up to now, we have found that G,T , J1 and J2 are

a set of mutually commuting linear operators. G and T are self-adjoint while J1 and J2 are
skew-adjoint, w.r.t. both metric tensors.

If we now diagonalize G, the 2n-dimensional vector space V = R2n will split into a direct
sum of eigenspaces, V = ⊕kVλk , where λk (k = 1, . . . , r � 2n) are the distinct eigenvalues
of G. According to what has just been proved, the sum will be an orthogonal sum w.r.t. both
metrics, and, in Vλk , G = λkIk with Ik the identity matrix in Vλk . Assuming compatibility,
T will commute with G and will be self-adjoint. Therefore, we will get a further orthogonal
decomposition of each Vλk of the form

Vλk =
⊕
r

Wλk,µk,r (56)

where µk,r are the (distinct) eigenvalues of T in Vλk . The complex structures commute in turn
with both G and T. Therefore they will leave each one of Wλk,µk,r invariant.

Now we can reconstruct, using g and J , the two symplectic structures. They will be
block-diagonal in the decomposition (47) of V , and on each one ofWλk,µk,r they will be of the
form

g1 = λkg2 ω1 = µk,rω2. (57)

Therefore, in the same subspaces J1 = g−1
1 ω1 = µk,r

λk
J2. It follows from J 2

1 = J 2
2 = −1

that
(
µk,r
λk

)2 = 1, whence µk,r = ±λk (and λk > 0 ). The index r can then assume only two
values, corresponding to ±λk and at most Vλk will have the decomposition of Vλk into the
orthogonal sum, Vλk =Wλk,λk ⊕Wλk,−λk . All in all, what we have proved is the following:

Lemma. If the two Hermitian structures h1 = (g1, ω1) and h2 = (g2, ω2) are compatible6,
then the vector space V ≈ R

2n will decompose into the (double) orthogonal sum:
⊕

k=1,...,r;α=±
Wλk,αλk (58)

where the index k = 1, . . . , r � 2n labels the eigenspaces of the (1, 1)-type tensorG = g−1
1 ◦g2

corresponding to its distinct eigenvalues λk > 0, while T = ω−1
1 ◦ ω2 will be diagonal

6 Coming, of course, from admissible triples (g1, ω1, J1) and (g2, ω2, J2).
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(with eigenvalues ±λk) on Wλk,±λk , on each one of which

g1 = λkg2 ω1 = ±λkω2 J1 = ±J2. (59)

As neither symplectic form is degenerate, the dimension of each one of Wλk,±λk will be
necessarily even.

Now we can further qualify and strengthen the compatibility condition by stating the
following:

Definition. Two (compatible) Hermitian structures will be said to be ‘in a generic position’
iff the eigenvalues of G and T have minimum (i.e. double) degeneracy.

In general, two appropriate geometrical objects such as two (0, 2) or (2, 0)-type tensor
fields are said to be in a generic position if they can be ‘composed’ to yield a 1–1 tensor whose
eigenvalues have minimum degeneracy. For instance, g1 and g2 are in a generic position if the
eigenvalues of G = g−1

1 ◦ g2 have minimum degeneracy, which possibly depends on further
conditions: when the compatibility is required, this degeneracy is double. The results that we
have just proved will imply that each one of Wλk,λk ,Wλk,−λk will have the minimum possible
dimension, that is 2.

Denoting these two-dimensional subspaces then by Ek (k = 1, . . . , n, now), all that has
been said up to now can be summarized in the following:

Proposition. If h1 and h2 are compatible and in a generic position, then R2n splits into a
sum of n mutually ‘bi-orthogonal’ (i.e. orthogonal with respect to both metrics g1 and g2)
two-dimensional vector subspaces: R2n = E1 ⊕ E2 ⊕ · · · ⊕ En. All the structures ga, Ja, ωa
decompose accordingly into a direct sum of structures on these two-dimensional subspaces,
and on each one of Ek they can be written as

g1|Ek = λk(e
∗
1 ⊗ e∗

1 + e∗
2 ⊗ e∗

2) λk > 0 g2|Ek = 	kg1|Ek 	k > 0

J1|Ek = (e2e
∗
1 − e1e

∗
2) J2|Ek = ±J1|Ek

ω1|Ek = λk(e
∗
1 ∧ e∗

2) ω2|Ek = ±	kω1|Ek
(60)

where e2 = J1e1, e1 is any given vector in Ek and e∗ are the dual basis of e.7

Every linear vector field preserving both h1 = (g1, ω1) and h2 = (g2, ω2) will have
a representative matrix commuting with those of T and G, and it will be block-diagonal in
the same eigenspaces Ek. Therefore, in the generic case, the analysis can be restricted to
each two-dimensional subspace Ek in which the vector field will preserve both a symplectic
structure and a positive-definite metric. Therefore it will be in sp(2)∩ SO(2) = U(1) and, on
each Ek , it will represent a harmonic oscillator with frequencies depending in general on Vk.

Having discussed the general case, and to gather more insight into the problem we are
discussing here, we will describe now in full details the two-dimensional case.

3.1. A two-dimensional example

Starting from the observation that two quadratic forms8 can always be diagonalized
simultaneously (at the price of using a non-orthogonal transformation, if necessary) we can
assume from the start g1 and g2 to be of the form

g1 =
∣∣∣∣	1 0

0 	2

∣∣∣∣ (61)

7 In other words, on each subspace g1 and g2 are proportional, while J1 = ±J2 and accordingly ω2 = ±	ω1.
8 One of which is assumed to be positive.
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and

g2 =
∣∣∣∣σ1 0

0 σ2

∣∣∣∣ . (62)

The more general J such that J 2 = −1 will be of the form

J =
∣∣∣∣∣

a b

− (1+a2)

b
−a

∣∣∣∣∣ . (63)

Compatibility with g1 requires that J be anti-Hermitian (w.r.t.g1), and this leads to

J = J1± =
∣∣∣∣∣∣

0 ±
√
	2

	1

∓
√
	1

	2
0

∣∣∣∣∣∣ (64)

and similarly

J = J2± =
∣∣∣∣∣∣

0 ±
√
σ2
σ1

∓
√
σ1
σ2

0

∣∣∣∣∣∣ (65)

from the requirement of admissibility with g2.
As a consequence

ω = ω1± =
∣∣∣∣ 0 ±√

	2	1

∓√
	2	1 0

∣∣∣∣ (66)

and

ω = ω2± =
∣∣∣∣ 0 ±√

σ2σ1

∓√
σ2σ1 0

∣∣∣∣ . (67)

Now we have all the admissible structures, i.e. (g1, ω1±, J1±) and (g2, ω2±, J2±).
Let us compute the invariance group for the first triple having made a definite choice for

the possible signs (say J = J+). The group is easily seen to be

O1(t) = cos(t)I + sin(t)J1 =
∣∣∣∣∣∣

cos(t)
√
	2

	1
sin(t)

−
√
	1

	2
sin(t) cos(t)

∣∣∣∣∣∣ (68)

while for the second triple we obtain

O2(t) = cos(t)I + sin(t)J2 =
∣∣∣∣∣∣

cos(t)
√
σ2
σ1

sin(t)

−
√
σ1
σ2

sin(t) cos(t)

∣∣∣∣∣∣ (69)

and in general we obtain two different realizations of SO(2).
The two realizations have only a trivial intersection (coinciding with the identity) if

ρ2/ρ1 �= σ2/σ1, and coincide when ρ2/ρ1 = σ2/σ1. The latter condition is easily seen (by
imposing, e.g., [J1,2, T ] = 0) to be precisely the condition of compatibility of the two triples.

To conclude the discussion of the example, let us see what happens in the complexified
version of the previous discussion.

To begin with, we have to define multiplication by complex numbers on R2, thus making
it a complex vector space, and this can be done in two ways, namely as

(x + iy)

∣∣∣∣ab
∣∣∣∣ = (xI + J1y)

∣∣∣∣ab
∣∣∣∣ (70)
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or as

(x + iy)

∣∣∣∣ab
∣∣∣∣ = (xI + J2y)

∣∣∣∣ab
∣∣∣∣ . (71)

Correspondingly, we can introduce two different Hermitian structures on R2 as

(·, ·)1 = g1 + iω1 (72)

or as

(·, ·)2 = g2 + iω2. (73)

They are antilinear in the first factor and in each case the corresponding multiplication by
complex numbers must be used. The O1(t) and O2(t) actions both coincide with the
multiplication of points of R2 by the complex numbers eit (i.e. with different realizations
ofU(1)), but the definition of multiplication by complex numbers is different in the two cases.

Going back to the general case, we can make contact with the theory of complete
integrability of a bi-Hamiltonian system by observing that T plays here the role of a recursion
operator (see [2]). Indeed, we show now that it generates a basis of vector fields preserving
both the Hermitian structures ha given by

�1, T �1, . . . , T
n−1�1. (74)

To begin with, these fields preserve all the geometrical structures, commute pairwise and
are linearly independent. In fact these properties follow from the observation that T, being a
constant 1–1 tensor, satisfies the Nijenhuis condition [6]. Therefore, for any vector field X

LTXT = T LXT (75)

which, T being invertible, amounts to

LTX = T LX. (76)

So, ∀k ∈ N

LT k�1 = TLT k−1�1 = · · · = T kL�1 (77)

and

T kL�1ωa = 0 = T kL�1ga. (78)

Moreover, ∀s ∈ N[
T k+s�1, T

k�1
] = LT k+s�1T

k�1 = T sLT k�1T
k�1 = T s

[
T k�1, T

k�1
] = 0. (79)

Besides, the assumption of minimal degeneracy of T implies that the minimal polynomial
[7] of T be of degree n. Indeed, we have shown that the diagonal form of T is

T =
⊕

k=1,...,n

{±ρkIk} (80)

where Ik is the identity on Vk. Any linear combination
m∑
r=0

αrT
r = 0 m � n− 1 (81)

yields a linear system for αr of n equations in m + 1 unknowns whose matrix of
coefficients is of maximal rank and that, for m = n− 1, coincides with the full Vandermonde
matrix of ρk .

Then, we can conclude that the n vector fields T r�1, r = 0, 1, . . . , n− 1, form a basis.
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4. The infinite-dimensional case

We now analyse the same kind of problems in the framework of quantum mechanics (QM),
taking advantage of the experience and results we have obtained in the previous sections where
we dealt with a real 2n-dimensional vector space.

In QM, the Hilbert space H is given as a vector space over the field of complex numbers.
Now we assume that two Hermitian structures are given on it, which we will denote as (·, ·)1
and (·, ·)2 (both linear, for instance, in the second factor). As in the real case, we look for
the group that leaves both structures invariant, that is the group of unitary transformations
w.r.t. both Hermitian structures. We call them ‘bi-unitary’.

In order to assure that (·, ·)1 and (·, ·)2 do not define different topologies on H, it is
necessary that there exist A,B ∈ R, 0 < A,B, such that

A ‖x‖2 � ‖x‖1 � B ‖x‖2 ∀x ∈ H. (82)

The use of Riesz theorem on bounded linear functionals immediately implies that there
exists an operator F defined implicitly by the equation

(x, y)2 = (Fx, y)1 ∀x, y ∈ H. (83)

F replaces the previous G and T tensors of the real vector space situation, i.e. now it contains
both the real and imaginary parts of the Hermitian structure, and in fact

F = (g1 + iω1)
−1 ◦ (g2 + iω2). (84)

It is trivial to show that F is bounded, positive and self-adjoint with respect to both Hermitian
structures and that

1

B2
� ‖F‖1 � 1

A2

1

B2
� ‖F‖2 � 1

A2
. (85)

If H is finite-dimensional, F can be diagonalized, the two Hermitian structures decompose in
each eigenspace of F, where they are proportional and we get immediately that the group of
bi-unitary transformations is indeed

U(n1)× U(n2)× · · · × U(nk) n1 + n2 + · · · + nk = n = dim H (86)

where ni denotes the degeneracy of the ith eigenvalue of F.
In the infinite-dimensional case F may have a point part of the spectrum and a continuum

part. From the point part of the spectrum, one getsU(n1)×U(n2)×· · · where now ni can also
be ∞. The continuum part is more delicate to discuss. It will contain for sure the commutative
group UF of bi-unitary operators of the form

{
eif (F )

}
, where f is any real-valued function

(with very mild properties [8]).
The concept of genericity in the infinite-dimensional case cannot be given as easily as in

the finite-dimensional case. One can say that the eigenvalues should be nondegenerate but
what for the continuous spectrum? We give here an alternative definition that works for the
finite and infinite cases as well.

Note first that any bi-unitary operator must commute with F. Indeed (x,U †FUy)2 =
(Ux, FUy)2 = (FUx,Uy)2 = (Ux,Uy)1 = (x, y)1 = (Fx, y)2 = (x, Fy)2, from this
U †FU = F , [F,U ] = 0.

The group of bi-unitary operators therefore belongs to the commutant F ′ of the operator
F. The genericity condition can be restated in a purely algebraic form as follows:

Definition. Two Hermitian forms are in a generic position iff F ′′ = F ′, i.e. the bicommutant
of F coincides with the commutant of F.

In other words, this means that F generates a complete set of observables.
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This definition reduces, for the case of a pure point spectrum, to the condition of
nondegeneracy of the eigenvalues of F and, in the real case, to the minimum possible
degeneracy of the eigenvalues of T and G, that is 2.

To grasp how the definition works, we will give some simple examples. Consider
(Fψ)(x) = x2ψ(x) on the space L2([−b,−a] ∪ [a, b]) with 0 < a < b; then the operator x,
its powers xn and the parity operator P belong to F ′ while F ′′ does not contain x (and any odd
power of x) because they do not commute with P. So if F = x2 the two Hermitian structures
are not in a generic position because F ′′ ⊂ F ′. In contrast, on the space L2([a, b]), F ′′ = F ′

because a parity operator P does not exist in this case, so the two Hermitian structures are
now in a generic position. In this case, the group of bi-unitary operators is

{
eif (x2)t

}
for the

appropriate class of functions f . In some sense, when a continuous part of the spectrum is
considered, there appears a continuous family of U(1) as a counterpart of the discrete family
of U(1) corresponding to the discrete part of the spectrum.

Remarks.

(i) Suppose that complex Hilbert spaces with two Hermitian structures have been constructed
from a given real vector space V using two compatible and admissible triples (g1, ω1, J1)

and (g2, ω2, J2). Then, by complexification, we get two different Hilbert spaces, each
one with its proper multiplication by complex numbers and with its proper Hermitian
structure. The previous case we have just studied is obtained if we assume J1 = J2. It is
easy to show that this is a sufficient condition for compatibility. This is the reason why in
the quantum-mechanical case the group of bi-unitary transformations is never empty, and
the compatibility condition is encoded already in the assumptions.

(ii) If J1 �= J2 but the compatibility condition still holds, we know that V splits into V+ ⊕V−,
where J1 = ±J2 onV± respectively. On V+ we have the previous case, while onV− we get
two Hermitian structures, one C-linear and one anti-C-linear in the second factor (which
one is linear and which is antilinear depends on the complexification we have decided to
use). From the point of view of the group of unitary transformations, this circumstance is
irrelevant, because the set of unitary transformations does not change from being defined
w.r.t. a Hermitian structure or w.r.t. its complex conjugate. We conclude from this that
our analysis goes through in general, provided the compatibility condition holds.

5. Conclusions

We will try now to summarize our main result, by restating it at the same time in a more
concise group-theoretical language. What we have shown is, to begin with, that once
two admissible triples (g1, ω1, J1) and (g2, ω2, J2) are given on a real, even-dimensional
vector space V ≈ R2n, they define two 2n-dimensional real representations Ur(2n; g1, ω1)

and Ur(2n; g2, ω2) of the unitary group U(n), Ur(2n; ga, ωa) (a = 1, 2) being the group
of transformations that simultaneously leave ga and ωa (and hence Ja) invariant. Their
intersection

Wr =: {Ur(2n; g1, ω1) ∩ Ur(2n; g2, ω2)} (87)

will be their common subgroup that is an invariance group for both triples. The assumption
of compatibility9 implies that Wr should not reduce to the identity alone.

If the two triples are in a generic position, then

Wr = SO(2)× SO(2)× · · · × SO(2)︸ ︷︷ ︸
n factors

(88)

9 As the previous two-dimensional example shows explicitly, but it should also be clear by now in general.
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where SO(2) ≈ U(1) or more generally if the genericity assumption is dropped

Wr = Ur(2r1; g, ω)× Ur(2r2; g, ω)× · · · × Ur(2rk; g, ω) (89)

where r1 + r2 + · · · + rk = n and (g, ω) is any one of the two pairs (g1, ω1) and (g2, ω2).
The real vector space V ≈ R2n will then decompose into a direct sum of even-

dimensional subspaces that are mutually orthogonal w.r.t. both metrics, and on each subspace
the corresponding (realization of the) special orthogonal group will act irreducibly.

Alternatively, we can complexify V ≈ R2n, and that in two different ways, using the
two complex structures that are at our disposal. The equivalent statement in the complex
framework will then be as follows.

Given two Hermitian structures ha, a = 1, 2, on a complex n-dimensional vector space
Cn, they define two representations U(n; ha), a = 1, 2, of the group U(n) on the same Cn.
U(h1, n) (respectively U(h2, n)) will be the group of transformations that are unitary with
respect to h1 (respectively h2). The group W of simultaneous invariance for both Hermitian
structures,

W ≡ {U(h1, n) ∩ U(h2, n)} (90)

will be a subgroup of both U(h1, n) and U(h2, n), and our assumption of compatibility of ha
implies that the component of W connected to the identity should not reduce to the identity
alone.

The assumption of genericity implies that

W = U(1)× U(1)× · · · × U(1)︸ ︷︷ ︸
n factors

(91)

If the assumption of genericity is dropped, one can easily show, along the same lines as in the
generic case, that W will be of the form

W = U(r1)× U(r2)× · · · × U(rk) (92)

with r1 + r2 + · · · + rk = n. C
n will decompose accordingly into a direct sum of subspaces

that will be mutually orthogonal with respect to both ha , and on each subspace the appropriate
U(r) will act irreducibly.

We have also shown that these results generalize to the infinite-dimensional case as
well. Some extra assumptions must be added on the Hermitian structures in order that they
define the same topology in H and an appropriate definition of genericity must also be given.
Then, a decomposition as in equations (91) and (92) is obtained, possibly with denumerable
discrete terms and a continuum part as well. We note that, in the spirit of this work where
two Hermitian structures are given from the very beginning, it is natural to supplement
the compatibility condition, in the infinite-dimensional case, with a topological equivalence
condition. However, from the point of view of the study of bi-Hamiltonian systems, where a
fixed dynamics is given, it would be more natural to assume some weaker regularity condition,
for instance, that the given dynamics should be continuous with respect to both structures.

Recently, bi-Hamiltonian systems ‘generated’ out of a pencil of compatible Poisson
structures have been considered [9], also in connection with the separability problem [10]. It
should be noted that our compatible structures would give rise to a pencil of compatible triples
defined by

gγ = g1 + γg2 ωγ = ω1 + γω2 Jγ . (93)

A systematic comparison with this approach is presently under consideration.
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